Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(9): e23154, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37606581

RESUMEN

Skeletal muscle is a highly plastic tissue, adapting its structure and metabolism in response to diverse conditions such as contractile activity, nutrients, and diseases. Finding a novel master regulator of muscle mass and quality will provide new therapeutic targets for the prevention and treatment of muscle weakness. Musashi is an RNA-binding protein that dynamically regulates protein expression; it was originally discovered as a cell fate determination factor in neural cells. Here, we report that Musashi-2 (Msi2) is dominantly expressed in slow-type muscle fibers, fibers characterized by high metabolism and endurance. Msi2 knockout (KO) mice exhibited a decrease in both soleus myofiber size and number compared to control mice. Biochemical and histological analyses revealed that type IIa fibers, which are of the fast type but have high metabolic capacity, were decreased in Msi2 KO mice. The contraction force of isolated soleus muscle was lower in KO mice, and the expression of the metabolic proteins, cytochrome c oxidase and myoglobin, was also decreased in KO muscle. Our data demonstrate the critical role of Msi2 in the maintenance of normal fiber-type composition and metabolism.


Asunto(s)
Fibras Musculares Esqueléticas , Atrofia Muscular , Animales , Ratones , Atrofia Muscular/genética , Músculo Esquelético , Nutrientes , Complejo IV de Transporte de Electrones/genética , Ratones Noqueados
2.
STAR Protoc ; 4(3): 102471, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37515762

RESUMEN

Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization. This protocol will facilitate the rational design of culture substrates with mechanical patterns for the engineering of various functional organoids. For complete details on the use and execution of this protocol, please refer to Takebe et al. (2015) and Matsuzaki et al. (2014, 2022).1,2,3.


Asunto(s)
Hidrogeles , Organoides
3.
Heliyon ; 9(4): e15281, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37096007

RESUMEN

Carnitine plays multiple roles in skeletal muscle metabolism, including fatty acid transport and buffering of excess acetyl-CoA in the mitochondria. The skeletal muscle cannot synthesize carnitine; therefore, carnitine must be taken up from the blood into the cytoplasm. Carnitine metabolism, its uptake into cells, and the subsequent reactions of carnitine are accelerated by muscle contraction. Isotope tracing enables the marking of target molecules and monitoring of tissue distribution. In this study, stable isotope-labeled carnitine tracing was combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging to determine carnitine distribution in mouse skeletal muscle tissues. Deuterium-labeled carnitine (d3-carnitine) was intravenously injected into the mice and diffused to the skeletal muscles for 30 and 60 min. To examine whether muscle contraction changes the distribution of carnitine and its derivatives, unilateral in situ muscle contraction was performed; 60 min muscle contraction showed increased d3-carnitine and its derivative d3-acetylcarnitine in the muscle, indicating that carnitine uptake in cells is promptly converted to acetylcarnitine, consequently, buffering accumulated acetyl-CoA. While the endogenous carnitine was localized in the slow type fibers rather than fast type, the contraction-induced distributions of d3-carnitine and acetylcarnitine were not necessarily associated with muscle fiber type. In conclusion, the combination of isotope tracing and MALDI-MS imaging can reveal carnitine flux during muscle contraction and show the significance of carnitine in skeletal muscles.

4.
Biochem Biophys Res Commun ; 639: 169-175, 2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36521377

RESUMEN

Myokines, secreted factors from skeletal muscle, act locally on muscle cells or satellite cells, which is important in regulating muscle mass and function. Here, we found platelet-derived growth factor subunit B (PDGF-B) is constitutively secreted from muscle cells without muscle contraction. Furthermore, PDGF-B secretion increased with myoblast to myotube differentiation. To examine the role of PDGF-B as a paracrine or autocrine myokine, myoblasts or myotubes were treated with PDGF-B. As a result, myoblast proliferation was significantly enhanced via several signaling pathways. Intriguingly, myotubes treated with PDGF-B showed enhanced maturation as indicated by their increased myotube diameter, myosin heavy chain expression, and strengthened contractile force. These findings suggest that PDGF-B is constitutively secreted by myokines to enhance myoblast proliferation and myotube maturation, which may contribute to skeletal muscle regeneration.


Asunto(s)
Fibras Musculares Esqueléticas , Células Satélite del Músculo Esquelético , Diferenciación Celular/fisiología , Proliferación Celular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Transducción de Señal , Animales , Ratones
5.
iScience ; 25(10): 105109, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36317160

RESUMEN

Spatially controlled self-organization represents a major challenge for organoid engineering. We have developed a mechanically patterned hydrogel for controlling self-condensation process to generate multi-cellular organoids. We first found that local stiffening with intrinsic mechanical gradient (IG > 0.008) induced single condensates of mesenchymal myoblasts, whereas the local softening led to stochastic aggregation. Besides, we revealed the cellular mechanism of two-step self-condensation: (1) cellular adhesion and migration at the mechanical boundary and (2) cell-cell contraction driven by intercellular actin-myosin networks. Finally, human pluripotent stem cell-derived hepatic progenitors with mesenchymal/endothelial cells (i.e., liver bud organoids) experienced collective migration toward locally stiffened regions generating condensates of the concave to spherical shapes. The underlying mechanism can be explained by force competition of cell-cell and cell-hydrogel biomechanical interactions between stiff and soft regions. These insights will facilitate the rational design of culture substrates inducing symmetry breaking in self-condensation of differentiating progeny toward future organoid engineering.

6.
Sci Rep ; 12(1): 13818, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970858

RESUMEN

Muscle weakness is detrimental not only to quality of life but also life expectancy. However, effective drugs have still not been developed to improve and prevent muscle weakness associated with aging or diseases. One reason for the delay in drug discovery is that no suitable in vitro screening system has been established to test whether drugs improve muscle strength. Here, we used a specific deformable silicone gel substrate to effectively and sensitively evaluate the contractile force generated by myotubes from wrinkles formed on the substrate. Using this system, it was found that the contractile force generated by an atrophic phenotype of myotubes induced by dexamethasone or cancer cell-conditioned medium treatment significantly decreased while that generated by hypertrophic myotubes induced by insulin-like growth factor-1 significantly increased. Notably, it was found that changes in the index related to contractile force can detect atrophic or hypertrophic phenotypes more sensitively than changes in myotube diameter or myosin heavy chain expression, both commonly used to evaluate myotube function. These results suggest that our proposed system will be an effective tool for assessing the contractile force-related state of myotubes, which are available for the development of drugs to prevent and/or treat muscle weakness.


Asunto(s)
Debilidad Muscular , Calidad de Vida , Humanos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Debilidad Muscular/metabolismo , Cadenas Pesadas de Miosina/metabolismo
7.
Sci Rep ; 12(1): 13020, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906363

RESUMEN

Muscle fibres are broadly categorised into types I and II; the fibre-type ratio determines the contractile and metabolic properties of skeletal muscle tissue. The maintenance of type I fibres is essential for the prevention of obesity and the treatment of muscle atrophy caused by type 2 diabetes or unloading. Some reports suggest that myokines are related to muscle fibre type determination. We thus explored whether a myokine determines whether satellite cells differentiate to type I fibres. By examining the fibre types separately, we identified R-spondin 3 (Rspo3) as a myokine of interest, a secreted protein known as an activator of Wnt signalling pathways. To examine whether Rspo3 induces type I fibres, primary myoblasts prepared from mouse soleus muscles were exposed to a differentiation medium containing the mouse recombinant Rspo3 protein. Expression of myosin heavy chain (MyHC) I, a marker of type I fibre, significantly increased in the differentiated myotubes compared with a control. The Wnt/ß-catenin pathway was shown to be the dominant signalling pathway which induces Rspo3-induced MyHC I expression. These results revealed Rspo3 as a myokine that determines whether satellite cells differentiate to type I fibres.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Trombospondinas/metabolismo
8.
Biosci Biotechnol Biochem ; 86(6): 730-738, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35285857

RESUMEN

Muscle atrophy is a major health problem that needs effective prevention and treatment approaches. Chronic exercise, an effective treatment strategy for atrophy, promotes muscle hypertrophy, which leads to dynamic metabolic changes; however, the metabolic changes vary among myofiber types. To investigate local metabolic changes due to chronic exercise, we utilized comprehensive proteome and mass spectrometry (MS) imaging analyses. Our training model exhibited hypertrophic features only in glycolytic myofibers. The proteome analyses demonstrated that exercise promoted anabolic pathways, such as protein synthesis, and significant changes in lipid metabolism, but not in glucose metabolism. Furthermore, the fundamental energy sources, glycogen, neutral lipids, and ATP, were sensitive to exercise, and the changes in these sources differed between glycolytic and oxidative myofibers. MS imaging revealed that the lipid composition differs among myofibers; arachidonic acid might be an effective target for promoting lipid metabolism during muscle hypertrophy in oxidative myofibers.


Asunto(s)
Músculo Esquelético , Proteoma , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Espectrometría de Masas , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteoma/metabolismo
9.
Front Cell Dev Biol ; 9: 640399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732705

RESUMEN

Glucose is a major energy source consumed by proliferating mammalian cells. Therefore, in general, proliferating cells have the preference of high glucose contents in extracellular environment. Here, we showed that high glucose concentrations impede the proliferation of satellite cells, which are muscle-specific stem cells, under adherent culture conditions. We found that the proliferation activity of satellite cells was higher in glucose-free DMEM growth medium (low-glucose medium with a glucose concentration of 2 mM) than in standard glucose DMEM (high-glucose medium with a glucose concentration of 19 mM). Satellite cells cultured in the high-glucose medium showed a decreased population of reserve cells, identified by staining for Pax7 expression, suggesting that glucose concentration affects cell fate determination. In conclusion, glucose is a factor that decides the cell fate of skeletal muscle-specific stem cells. Due to this unique feature of satellite cells, hyperglycemia may negatively affect the regenerative capability of skeletal muscle myofibers and thus facilitate sarcopenia.

10.
Food Funct ; 12(2): 825-833, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33399617

RESUMEN

Aging induces drastic changes in muscle mass and function (sarcopenia); however, the detailed mechanisms underlying sarcopenia remain poorly understood. Recent studies suggested that age-related increases in oxidative stress induce muscle atrophy. In this study, we investigated the effect of 6-month supplementation of antioxidants, specifically piceatannol (PIC) and enzymatically modified isoquercitrin (EMIQ), on age-related physiological changes, including skeletal muscle weight and quality, in 25-month-old (OLD) mice, compared to in 4-month-old (young, YNG) C57BL/6J mice. Muscle weight corrected by body weight significantly declined in OLD mice, compared to in YNG mice. The control OLD mice also showed changes in the expression of genes related to muscle fiber type, reduced locomotor activity, and increased oxidative stress markers in blood. Consistent with the muscle weight and quality changes, whole-body fat oxidation during sedentary conditions and exercise periods in control OLD mice was significantly lower than that in YNG mice. Interestingly, compared to the control OLD mice, the PIC- or EMIQ-fed OLD mice showed higher fat oxidation. Furthermore, EMIQ, but not PIC, increased locomotor activity, the expression of genes encoding antioxidant enzymes, and suppressed the carbonylated protein in the skeletal muscle of OLD mice. These results suggested that chronic antioxidant intake could alleviate aging-related muscle function changes.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Músculo Esquelético/efectos de los fármacos , Sarcopenia/prevención & control , Animales , Antioxidantes/administración & dosificación , Suplementos Dietéticos , Espectrometría de Masas , Ratones , Actividad Motora , Estrés Oxidativo/efectos de los fármacos
11.
iScience ; 23(10): 101558, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083727

RESUMEN

Skeletal muscle adaptation is mediated by cooperative regulation of metabolism, signal transduction, and gene expression. However, the global regulatory mechanism remains unclear. To address this issue, we performed electrical pulse stimulation (EPS) in differentiated C2C12 myotubes at low and high frequency, carried out metabolome and transcriptome analyses, and investigated phosphorylation status of signaling molecules. EPS triggered extensive and specific changes in metabolites, signaling phosphorylation, and gene expression during and after EPS in a frequency-dependent manner. We constructed trans-omic network by integrating these data and found selective activation of the pentose phosphate pathway including metabolites, upstream signaling molecules, and gene expression of metabolic enzymes after high-frequency EPS. We experimentally validated that activation of these molecules after high-frequency EPS was dependent on reactive oxygen species (ROS). Thus, the trans-omic analysis revealed ROS-dependent activation in signal transduction, metabolome, and transcriptome after high-frequency EPS in C2C12 myotubes, shedding light on possible mechanisms of muscle adaptation.

12.
Cell Rep ; 32(9): 108051, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877665

RESUMEN

Cell-to-cell variability in signal transduction in biological systems is often considered noise. However, intercellular variation (i.e., cell-to-cell variability) has the potential to enable individual cells to encode different information. Here, we show that intercellular variation increases information transmission of skeletal muscle. We analyze the responses of multiple cultured myotubes or isolated skeletal muscle fibers as a multiple-cell channel composed of single-cell channels. We find that the multiple-cell channel, which incorporates intercellular variation as information, not noise, transmitted more information in the presence of intercellular variation than in the absence according to the "response diversity effect," increasing in the gradualness of dose response by summing the cell-to-cell variable dose responses. We quantify the information transmission of human facial muscle contraction during intraoperative neurophysiological monitoring and find that information transmission of muscle contraction is comparable to that of a multiple-cell channel. Thus, our data indicate that intercellular variation can increase the information capacity of tissues.


Asunto(s)
Músculo Esquelético/fisiología , Análisis de la Célula Individual/métodos , Células Cultivadas , Humanos
13.
PLoS One ; 15(8): e0237095, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32756599

RESUMEN

Regular exercise is an effective strategy that is used to prevent and treat obesity as well as type 2 diabetes. Exercise-induced myokine secretion is considered a mechanism that coordinates communication between muscles and other organs. In order to examine the possibility of novel communications from muscle to adipose tissue mediated by myokines, we treated 3T3-L1 adipocytes with C2C12 myotube electrical pulse stimulation-conditioned media (EPS-CM), using a C2C12 myotube contraction system stimulated by an electrical pulse. Continuous treatment with myotube EPS-CM promoted adipogenesis of 3T3-L1 pre-adipocytes via the upregulation of the peroxisome proliferator-activated receptor-gamma (PPARγ) 2 and PPARγ-regulated gene expression. Furthermore, our results revealed that myotube EPS-CM induces lipolysis and secretion of adiponectin in mature adipocytes. EPS-CM obtained from a C2C12 myoblast culture did not induce such changes in these genes, suggesting that contraction-induced myokine(s) secretion occurs particularly in differentiated myotubes. Thus, contraction-induced secretion of myokine(s) promotes adipogenesis and lipid metabolism in 3T3-L1 adipocytes. These findings suggest the possibility that skeletal muscle communicates to adipose tissues during exercise, probably by the intermediary of unidentified myokines.


Asunto(s)
Adipocitos/citología , Diferenciación Celular , Lipólisis , Fibras Musculares Esqueléticas/metabolismo , Células 3T3 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis , Adiponectina/metabolismo , Animales , Comunicación Celular , Medios de Cultivo Condicionados/farmacología , Ratones , PPAR gamma/metabolismo
14.
EMBO Rep ; 20(11): e47957, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31524320

RESUMEN

In this study, we identified a previously uncharacterized skeletal satellite cell-secreted protein, R3h domain containing-like (R3hdml). Expression of R3hdml increases during skeletal muscle development and differentiation in mice. Body weight and skeletal muscle mass of R3hdml knockout (KO) mice are lower compared to control mice. Expression levels of cell cycle-related markers, phosphorylation of Akt, and expression of insulin-like growth factor within the skeletal muscle are reduced in R3hdml KO mice compared to control mice. Expression of R3hdml increases during muscle regeneration in response to cardiotoxin (CTX)-induced muscle injury. Recovery of handgrip strength after CTX injection was significantly impaired in R3hdml KO mice, which is rescued by R3hdml. Our results indicate that R3hdml is required for skeletal muscle development, regeneration, and, in particular, satellite cell proliferation and differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores , Proliferación Celular , Expresión Génica , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración , Transducción de Señal
15.
Biosci Biotechnol Biochem ; 83(10): 1851-1857, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31159662

RESUMEN

Several food constituents augment exercise-induced muscle strength improvement; however, the detailed mechanism underlying these combined effects is unknown because of the lack of a cultured cell model for evaluating the contraction-induced muscle protein synthesis level. Here, we aimed to establish a new in vitro muscle contraction model for analyzing the activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. We adopted the tetanic electric stimulation of 50 V at 100 Hz for 10 min in L6.C11 myotubes. Akt, ERK1/2, and p70S6K phosphorylation increased significantly after electrical pulse stimulation (EPS), compared to untreated cells. Next, we used this model to analyze mTORC1 signaling in combination with exercise and beta-hydroxy-beta-methylbutyrate (HMB), an l-leucine metabolite. p70S6K phosphorylation increased significantly in the EPS+HMB group compared to that in the EPS-alone group. These findings show that our model could be used to analyze mTORC1 signaling and that HMB enhances muscle contraction-activated mTORC1 signaling.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculo Esquelético/efectos de los fármacos , Transducción de Señal , Valeratos/administración & dosificación , Animales , Línea Celular , Estimulación Eléctrica , Técnicas In Vitro , L-Lactato Deshidrogenasa/metabolismo , Contracción Muscular , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Músculo Esquelético/fisiología , Ratas
16.
Rapid Commun Mass Spectrom ; 33(2): 185-192, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30367536

RESUMEN

RATIONALE: In skeletal muscles, there are four myofiber types, Types I, IIa, IIx, and IIb, which show different contraction characteristics and have different metabolic statuses. To understand muscle function, it is necessary to analyze myofiber-specific metabolic changes. However, these fibers are heterogeneous and are hard to discriminate by conventional analyses using tissue extracts. In this study, we found myofiber-specific molecules and molecular markers of other cells such as smooth muscle cells, fat cells, and motor neurons, and visualized them within muscle sections. METHODS: We used three different muscle tissues, namely extensor digitorum longus, soleus, and gastrocnemius tissues, from ICR mice. After the muscles had been harvested, cross-sections were prepared using a cryostat and analyzed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), and conventional immunofluorescence imaging. RESULTS: By comparing the MALDI MSI results with the immunofluorescence imaging results, we were able to identify each fiber and cell-specific ion. It was especially important that we could find Type IIa and IIb specific ions, because these were difficult to distinguish. CONCLUSIONS: Through MSI analyses, we performed a comprehensive survey to identify cell- and myofiber-specific molecular markers. In conclusion, we assigned muscle fiber Type I, IIa, and IIb-specific molecular ions at m/z 856.6, 872.6, and 683.8, respectively. These molecular markers might be useful for verifying changes that occur due to exercise and/or disease.


Asunto(s)
Biomarcadores/análisis , Fibras Musculares Esqueléticas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Biomarcadores/metabolismo , Cromatografía en Capa Delgada , Diglicéridos/análisis , Diglicéridos/metabolismo , Procesamiento de Imagen Asistido por Computador , Lípidos/análisis , Masculino , Ratones Endogámicos ICR , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Liso/química , Músculo Liso/metabolismo , Espectrometría de Masas en Tándem
17.
PLoS One ; 13(10): e0206146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356272

RESUMEN

Skeletal muscle is considered a secretory organ that produces bioactive proteins known as myokines, which are released in response to various stimuli. However, no experimental evidence exists regarding the mechanism by which acute muscle contraction regulates myokine secretion. Here, we present evidence that acute contractions induced myokine secretion from C2C12 myotubes. Changes in the cell culture medium unexpectedly triggered the release of large amounts of proteins from the myotubes, and these proteins obscured the contraction-induced myokine secretion. Once protein release was abolished, the secretion of interleukin-6 (IL-6), the best-known regulatory myokine, increased in response to a 1-hour contraction evoked by electrical stimulation. Using this experimental condition, intracellular calcium flux, rather than the contraction itself, triggered contraction-induced IL-6 secretion. This is the first report to show an evidence for acute contraction-induced myokine secretion by skeletal muscle cells.


Asunto(s)
Interleucina-5/metabolismo , Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Animales , Western Blotting , Calcio/metabolismo , Línea Celular , Medios de Cultivo Condicionados/metabolismo , Estimulación Eléctrica , Transporte Iónico , Ratones , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología
18.
Sci Rep ; 7: 46369, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28417963

RESUMEN

Muscle wasting or sarcopenia contributes to morbidity and mortality in patients with cancer, renal failure, or heart failure, and in elderly individuals. Na+-K+-2Cl- cotransporter 1 (NKCC1) is highly expressed in mammalian skeletal muscle, where it contributes to the generation of membrane ion currents and potential. However, the physiologic function of NKCC1 in myogenesis is unclear. We investigated this issue using the NKCC1 inhibitors bumetanide and furosemide, which are commonly used loop diuretics. NKCC1 protein levels increased during C2C12 murine skeletal myoblast differentiation, similarly to those of the myogenic markers myogenin and myosin heavy chain (MHC). NKCC1 inhibitors markedly suppressed myoblast fusion into myotubes and the expression of myogenin and MHC. Furthermore, phosphorylated and total NKCC1 levels were elevated in mouse skeletal muscles after 6 weeks' voluntary wheel running. Immunofluorescence analyses of myofiber cross-sections revealed more large myofibers after exercise, but this was impaired by daily intraperitoneal bumetanide injections (0.2 or 10 mg/kg/day). NKCC1 plays an essential role in myogenesis and exercise-induced skeletal muscle hypertrophy, and sarcopenia in patients with renal or heart failure may be attributable to treatment with loop diuretics.


Asunto(s)
Diuréticos/administración & dosificación , Mioblastos/citología , Sarcopenia/etiología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Regulación hacia Arriba , Animales , Bumetanida/administración & dosificación , Bumetanida/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Diuréticos/farmacología , Furosemida/administración & dosificación , Furosemida/farmacología , Inyecciones Intraperitoneales , Ratones , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Fosforilación , Carrera , Sarcopenia/metabolismo
19.
Physiol Rep ; 5(2)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28108649

RESUMEN

Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O2) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆PmbO2) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O2 gas: 95.0%O2, 71.3%O2, and 47.5%O2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (SmbO2), and the PmbO2 was then calculated based on the SmbO2 and the O2 dissociation curve of the Mb. The SmbO2 and PmbO2 at rest decreased with the decrease in O2 supply, and the muscle contraction caused a further decrease in SmbO2 and PmbO2 under all O2 conditions. The net increase in mV˙O2 from the muscle contraction (∆mV˙O2) gradually decreased as the ∆PmbO2 decreased during muscle contraction. The results of this study suggest that ΔPmbO2 is a key determinant of the ΔmV˙O2.


Asunto(s)
Hipoxia/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Animales , Hipoxia de la Célula , Glucosa , Miembro Posterior , Masculino , Mioglobina/metabolismo , Oxígeno/metabolismo , Ratas , Ratas Wistar , Trometamina
20.
Endocrinology ; 157(12): 4691-4705, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27653033

RESUMEN

Diabetes develops predominantly in males in experimental models, and extensive evidence suggests that 17ß-estradiol (E2) modulates progression of diabetes in humans. We previously developed a severely diabetic transgenic (Tg) mouse model by ß-cell-specific overexpression of inducible cAMP early repressor (ICER) and found that male ICER-Tg mice exhibit sustained severe hyperglycemia, but female ICER-Tg mice gradually became normoglycemic with aging. This implies that differences in circulating androgen and E2 levels might influence skeletal muscle glucose uptake and glycemic status. Here we examined whether a decrease of androgen or E2 excess can improve muscle glucose uptake in hyperglycemic male ICER-Tg mice and, conversely, whether a decrease of E2 or androgen excess can elevate blood glucose levels and impair muscle glucose uptake in normoglycemic female ICER-Tg mice. We treated hyperglycemic male ICER-Tg mice with orchiectomy (ORX) or ORX+E2 pellet implantation and normoglycemic female ICER-Tg mice with ovariectomy (OVX) or OVX+5α-DHT pellet implantation to alter the androgen to E2 ratio. ORX+E2 treatment of male ICER-Tg mice caused a rapid drop in blood glucose via both a dramatic increase of ß-cells and significantly improved muscle glucose uptake due to the induction of glucose transporter type 4 (GLUT4) expression and translocation of GLUT4 to the cell membrane. In contrast, OVX+5α-DHT-treated female ICER-Tg mice showed an elevation of blood glucose without any decrease of ß-cells; instead, they showed decreased muscle glucose uptake due to decreased activation of serine/threonine-specific protein kinase AKT and GLUT4 expression. These findings suggest that androgen (5α-DHT) promotes insulin resistance in females, whereas E2 improves insulin sensitivity in severely diabetic male mice.


Asunto(s)
Dihidrotestosterona/farmacología , Estradiol/farmacología , Glucosa/metabolismo , Músculo Esquelético/efectos de los fármacos , Animales , Glucemia/metabolismo , Femenino , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Músculo Esquelético/metabolismo , Orquiectomía , Ovariectomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...